Gene Regulatory Networks for Key Nutrient Responses Revealed

Scientists Develop Methods to Validate Gene Regulation Networks

A team of biologists and computer scientists has mapped out a network of interactions for how plant genes coordinate their response to nitrogen, a crucial nutrient and the main component of fertilizer.

Findings Reveal How Plants Respond to Key Nutrient in Fertilizer

A team of biologists and computer scientists has mapped out a network of interactions for how plant genes coordinate their response to nitrogen, a crucial nutrient and the main component of fertilizer. The work, published in the journal Nature Communications, offers a potential framework and more efficient methods that can be used to investigate a wide-range of vital pathways in any organism.

“The sequencing of whole genomes has transformed life sciences, leading to breakthroughs in medicine, agriculture, and basic research,” explains Matthew Brooks, an NIH-postdoctoral fellow in New York University’s Department of Biology and the paper’s lead author. “The challenge now is to determine how the genes that are encoded by an organism are regulated and work together in networks that allow plants and animals to respond to their environment.”

The scientists, working in NYU’s Center for Genomics and Systems Biology, focused on gene regulatory networks, which consist of transcription factors and the target genes that they regulate. These gene regulatory networks enable organisms to adapt to fluctuating surroundings.