Liquid Biopsies help with Lung Cancer Diagnostics

Illumina-Sponsored Study Finds Liquid Biopsy Complements Tissue-Based Genotyping in Lung Cancer

Lung Cancer Diagnostics

NEW YORK (GenomeWeb) – The Illumina-sponsored Actionable Genome Consortium reported this week that cell-free DNA-based tumor genotyping for non-small cell lung cancer patients is concordant with tissue tumor-based genotyping most of the time and could be particularly useful in cases where acquiring a tissue biopsy is not feasible.

The group, which includes researchers from Memorial Sloan Kettering Cancer Center, Dan-Farber Cancer Center, MD Anderson Cancer Center, Grail, and Illumina, published its study this week in Annals of Oncology.



READ MORE …

Immune microenvironment exerts a strong selection pressure in early-stage, untreated non-small-cell lung cancers that produces multiple routes to immune evasion

Neoantigen-directed immune escape in lung cancer evolution

Rachel Rosenthal, Elizabeth Larose Cadieux, Roberto Salgado, Maise Al Bakir, David A. Moore, Crispin T. Hiley, Tom Lund, Miljana Tanić, James L. Reading, Kroopa Joshi, Jake Y. Henry, Ehsan Ghorani, Gareth A. Wilson, Nicolai J. Birkbak, Mariam Jamal-Hanjani, Selvaraju Veeriah, Zoltan Szallasi, Sherene Loi, Matthew D. Hellmann, Andrew Feber, Benny Chain, Javier Herrero, Sergio A. Quezada, Jonas Demeulemeester, Peter Van Loo, Stephan Beck, Nicholas McGranahan, Charles Swanton & The TRACERx consortium

Nature (Research Article)

Abstract

The interplay between an evolving cancer and a dynamic immune microenvironment remains unclear. Here we analyse 258 regions from 88 early-stage, untreated non-small-cell lung cancers using RNA sequencing and histopathology-assessed tumour-infiltrating lymphocyte estimates. Immune infiltration varied both between and within tumours, with different mechanisms of neoantigen presentation dysfunction enriched in distinct immune microenvironments. Sparsely infiltrated tumours exhibited a waning of neoantigen editing during tumour evolution, indicative of historical immune editing, or copy-number loss of previously clonal neoantigens. Immune-infiltrated tumour regions exhibited ongoing immunoediting, with either loss of heterozygosity in human leukocyte antigens or depletion of expressed neoantigens. We identified promoter hypermethylation of genes that contain neoantigenic mutations as an epigenetic mechanism of immunoediting. Our results suggest that the immune microenvironment exerts a strong selection pressure in early-stage, untreated non-small-cell lung cancers that produces multiple routes to immune evasion, which are clinically relevant and forecast poor disease-free survival.

READ MORE …