Paternal mitochondrial contributions may be just as rare as we always thought
/Extraordinary claims require extraordinary evidence in the case of asserted mtDNA biparental inheritance
Antonio Salas, Sebastian Schoenherr, Hans Jurgen Bandelt, View ORCID ProfileAlberto Gomez-Carballa, & Hansi Weissensteiner
bioRxiv (Research Article)
Abstract—A breakthrough article published in PNAS by Luo et al. (2018) challenges a central dogma in biology which states that the mitochondrial DNA (mtDNA) is inherited exclusively from the mother. By sequencing the mitogenomes of several members of three independent families, the authors inferred an unprecedented pattern of biparental inheritance that requires the participation of an autosomal nuclear factor in the molecular process. However, a comprehensive analysis of their data reveals a number of issues that must be carefully addressed before challenging the current paradigm. Unfortunately, the methods section lacks any description of sample management, validation of their results in independent laboratories was deficient, and the reported findings have been observed at a frequency at complete variance with established evidence. Moreover, the remarkably high (and unusually homogeneous) levels of heteroplasmy reported can be readily detected using classical techniques for DNA sequencing. By reassessing the raw sequencing data with an alternative computational pipeline, we report strong correlation to the NextGENe results provided by the authors on a per sample base. However, the sequencing replicates from the same donors show aberrations in the variants detected that need further investigation to exclude contributions from other sources or methodological artifacts. Finally, applying the principle of reductio ad absurdum, we demonstrate that the nuclear factor invoked by the authors would need to be extraordinarily complex and precise in order to preclude linear accumulation of mtDNA lineages across generations. We discuss alternate scenarios that explain findings of the same nature as reported by Luo et al., in the context of in-vitro fertilization and therapeutic mtDNA replacement ooplasmic transplantation.